首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3344篇
  免费   880篇
  国内免费   1240篇
测绘学   219篇
大气科学   1766篇
地球物理   919篇
地质学   949篇
海洋学   675篇
天文学   70篇
综合类   186篇
自然地理   680篇
  2024年   15篇
  2023年   48篇
  2022年   123篇
  2021年   185篇
  2020年   166篇
  2019年   174篇
  2018年   171篇
  2017年   179篇
  2016年   213篇
  2015年   218篇
  2014年   255篇
  2013年   303篇
  2012年   260篇
  2011年   250篇
  2010年   205篇
  2009年   256篇
  2008年   250篇
  2007年   310篇
  2006年   262篇
  2005年   207篇
  2004年   205篇
  2003年   164篇
  2002年   148篇
  2001年   134篇
  2000年   109篇
  1999年   85篇
  1998年   90篇
  1997年   79篇
  1996年   86篇
  1995年   75篇
  1994年   57篇
  1993年   42篇
  1992年   35篇
  1991年   19篇
  1990年   21篇
  1989年   13篇
  1988年   20篇
  1987年   5篇
  1986年   4篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
排序方式: 共有5464条查询结果,搜索用时 15 毫秒
81.
Shuaipu Zhang  Mingan Shao 《水文研究》2017,31(15):2725-2736
Temporal stability of soil moisture has been widely used in hydrological monitoring since it emerged. However, the spatial analysis of temporal stability at the landscape scale is often limited because of insufficient sampling numbers. This work made an effort to investigate the spatial variations of temporal stability of soil moisture in an oasis landscape. The specific objectives of the study were to explore the spatial patterns of temporal stability and to determine the controlling factors of temporal stability in the desert oasis. A time series of soil moisture measurements were gathered on 23 occasions at 118 locations over 3 years in a rectangular transect of approximately 100 km2. The nonparametric Spearman's rank correlation coefficient, standard deviation of relative difference (SDRD), and mean absolute bias error (MABE) were used to quantify the temporal stability of soil moisture. Results showed that the temporal stability of soil moisture was depth dependent and season dependent. The spatial pattern of soil moisture in a deep soil layer and between two same seasons generally had a high temporal stability. SDRD and MABE were spatially autocorrelated and exhibited strong spatial structures in the geographic space. The concept of temporal stability can be extended to describe the time‐stable areas of soil moisture with geostatistics. There were great differences between SDRD and MABE in describing the temporal stability of soil moisture and in identifying the controlling factors of temporal stability. In this case, MABE was a better alternative to estimate the areal mean soil moisture using representative locations than SDRD. Land use type, soil moisture condition, and soil particle composition were the dominant controls of temporal stability in the oasis. These insights could help to better understand the essence of temporal stability of soil moisture in arid regions.  相似文献   
82.
By dating detrital zircon U-Pb ages of deposition sequence in foreland basins, we can analyze the provenance of these zircons and further infer the tectonic history of the mountain belts. This is a new direction of the zircon U-Pb chronology. The precondition of using this method is that we have to have all-around understanding to the U-Pb ages of the rocks of the orogenic belts, while the varied topography, high altitude of the zircon U-Pb ages of the orogenic belts are very rare and uneven. This restricts the application of this method. Modern river deposits contain abundant geologic information of their provenances, so we can probe the zircon U-Pb ages of the geological bodies in the provenances by dating the detrital zircon U-Pb ages of modern rivers' deposits. We collected modern river deposits of 14 main rivers draining from Pamir, South Tian Shan and their convergence zone and conducted detrital zircon U-Pb dating. Combining with the massive bed rock zircon U-Pb ages of the magmatic rocks and the detrital zircon U-Pb ages of the modern fluvial deposit of other authors, we obtained the distribution characteristics of zircon U-Pb ages of different tectonic blocks of Pamir and South Tian Shan. Overlaying on the regional geological map, we pointed out the specific provenance geological bodies of different U-Pb age populations and speculated the existence of some new geological bodies. The results show that different tectonic blocks have different age peaks. The main age peaks of South Tian Shan are 270~289Ma and 428~449Ma, that of North Pamir are 205~224Ma and 448~477Ma, Central Pamir 36~40Ma, and South Pamir 80~82Ma and 102~106Ma. The Pamir syntaxis locates at the west end of the India-Eurasia collision zone. The northern boundary of the Pamir is the Main Pamir Thrust(MPT)and the Pamir Front Thrust(PFT). In the Cenozoic, because of the squeezing action of the India Plate, the Pamir thrust a lot toward the north and the internal terranes of the Pamir strongly uplifted. For the far-field effect of the India-Eurasia collision, the Tian Shan on the north margin of the Tarim Basin also uplifted intensely during this period. Extensive exhumation went along with these upliftings. The material of the exhumation was transported to the foreland basin by rivers, which formed the very thick Cenozoic deposition sequence. These age peaks can be used as characteristic ages to recognize these tectonic blocks. These results lay a solid foundation for tracing the convergence process of Pamir and South Tian Shan in Cenozoic with the help of detrital zircon U-Pb ages of sediments in the foreland basin.  相似文献   
83.
Extensive loess covered areas characterize the mildly arid areas of western Israel, where average annual rainfall is 280 mm. Hydrological data point to a peculiar hydrological behavior of the ephemeral streams. The frequency of sporadic flash floods is very high. However, even in extreme rain events peak discharges are extremely low. Hydrographs are usually characterized by very steep rising and falling limbs, representative of saturated areas, extending over a limited part of the watershed. Following this observation we advanced the hypothesis that storm channel runoff originated in the channel itself, with negligible contribution from the adjoining hillslopes. The study was based on two complementary approaches. The hydrological approach was based on the detailed analysis of rainfall–runoff relationships in a small watershed (11 km2) and on the analysis of the hydrological characteristics of the drainage network. The second approach was based on the toposequence concept. Several boreholes were dug along a hillslope 400 m long. Chemical data obtained show no significant difference in the downslope direction. Similar results were also obtained for the particle size distribution and soil moisture content. Data obtained perfectly fit the concept of ‘Partial Area Contribution’ as it presents an extreme case of hydrological discontinuity at the hillslope–channel interface. The lack of pedological trends in the downslope direction is an additional indication of the limited connectivity between the hillslopes and the adjoining channel. The limited connectivity is attributed to the prevalence of low rain intensities in the study area. The present study is also relevant to our understanding of pedological processes in dryland areas. The high frequency of intermittent low intensity rainstorms limits runoff generation and flow distances, and casts doubt on the general application of the toposequence approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
84.
A simple grid cell‐based distributed hydrologic model was developed to provide spatial information on hydrologic components for determining hydrologically based critical source areas. The model represents the critical process (soil moisture variation) to run‐off generation accounting for both local and global water balance. In this way, it simulates both infiltration excess run‐off and saturation excess run‐off. The model was tested by multisite and multivariable evaluation on the 50‐km2 Little River Experimental Watershed I in Georgia, U.S. and 2 smaller nested subwatersheds. Water balance, hydrograph, and soil moisture were simulated and compared to observed data. For streamflow calibration, the daily Nash‐Sutcliffe coefficient was 0.78 at the watershed outlet and 0.56 and 0.75 at the 2 nested subwatersheds. For the validation period, the Nash‐Sutcliffe coefficients were 0.79 at the watershed outlet and 0.85 and 0.83 at the 2 subwatersheds. The per cent bias was less than 15% for all sites. For soil moisture, the model also predicted the rising and declining trends at 4 of the 5 measurement sites. The spatial distribution of surface run‐off simulated by the model was mainly controlled by local characteristics (precipitation, soil properties, and land cover) on dry days and by global watershed characteristics (relative position within the watershed and hydrologic connectivity) on wet days when saturation excess run‐off was simulated. The spatial details of run‐off generation and travel time along flow paths provided by the model are helpful for watershed managers to further identify critical source areas of non‐point source pollution and develop best management practices.  相似文献   
85.
Mountain headwater catchments in the semi‐arid Intermountain West are important sources of surface water because these high elevations receive more precipitation than neighboring lowlands. This study examined subsurface runoff in two hillslopes, one aspen dominated, the other conifer dominated, adjacent to a first order stream in snow‐driven northern Utah. Snow accumulation, soil moisture, trenchflow and streamflow were examined in hillslopes and their adjacent stream. Snow water equivalents (SWEs) were greater under aspen stands compared to conifer, the difference increasing with higher annual precipitation. Semi‐variograms of shallow spatial soil moisture patterns and transects of continuous soil moisture showed no increase in soil moisture downslope, suggesting the absence of subsurface flow in shallow (~12 cm) soil layers of either vegetation type. However, a clear threshold relationship between soil moisture and streamflow indicated hillslope–stream connectivity, deeper within the soil profile. Subsurface flow was detected at ~50 cm depth, which was sustained for longer in the conifer hillslope. Soil profiles under the two vegetation types varied, with deep aspen soils having greater water storage capacity than shallow rocky conifer soils. Though SWEs were less under the conifers, the soil profile had less water storage capacity and produced more subsurface lateral flow during the spring snowmelt. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
86.
87.
Hydrological processes of lowland watersheds of the southern USA are not well understood compared to a hilly landscape due to their unique topography, soil compositions, and climate. This study describes the seasonal relationships between rainfall patterns and runoff (sum of storm flow and base flow) using 13 years (1964–1976) of rainfall and stream flow data for a low‐gradient, third‐order forested watershed. It was hypothesized that runoff–rainfall ratios (R/P) are smaller during the dry periods (summer and fall) and greater during the wet periods (winter and spring). We found a large seasonal variability in event R/P potentially due to differences in forest evapotranspiration that affected seasonal soil moisture conditions. Linear regression analysis results revealed a significant relationship between rainfall and runoff for wet (r2 = 0·68; p < 0·01) and dry (r2 = 0·19; p = 0·02) periods. Rainfall‐runoff relationships based on a 5‐day antecedent precipitation index (API) showed significant (r2 = 0·39; p < 0·01) correspondence for wet but not (r2 = 0·02; p = 0·56) for dry conditions. The same was true for rainfall‐runoff relationships based on 30‐day API (r2 = 0·39; p < 0·01 for wet and r2 = 0·00; p = 0·79 for dry). Stepwise regression analyses suggested that runoff was controlled mainly by rainfall amount and initial soil moisture conditions as represented by the initial flow rate of a storm event. Mean event R/P were higher for the wet period (R/P = 0·33), and the wet antecedent soil moisture condition based on 5‐day (R/P = 0·25) and 30‐day (R/P = 0·26) prior API than those for the dry period conditions. This study suggests that soil water status, i.e. antecedent soil moisture and groundwater table level, is important besides the rainfall to seasonal runoff generation in the coastal plain region with shallow soil argillic horizons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
88.
The North China Plain, which is critical for food production in China, is encountering serious water shortage due to heavy agricultural water requirement. The accurate modelling of carbon dioxide flux and evapotranspiration (ET) in croplands is thus essential for yield prediction and water resources management. The land surface model is powerful in simulating energy and carbon dioxide fluxes between land and atmosphere. Some key processes in the Simple Biosphere Model (Version 2, SiB2) were parameterized based on the observations. The simulated fluxes were tested against the eddy covariance flux measurements over two typical winter wheat/maize double cropping fields. A simple diagnostic parameterisation of soil respiration, not included in SiB2, was added and calibrated using the observations to model the carbon budget. The Ball‐Berry stomatal conductance model was calibrated using observed leaf gas exchange rate, showing that the original SiB2 could significantly underpredict the ET in the wheat field. SiB2 significantly underpredicted soil resistance at the Weishan site, leading to overpredict the ET. Overall, there was a close agreement between the simulated and observed latent heat fluxes and net CO2 exchange using the re‐parameterized SiB2. These findings are important when the model is used for the regional simulation in the North China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
89.
The ability to model and predict the formation of desiccation cracks is potentially beneficial in many applications such as clay liner design, earth dam construction, and crop science, etc. However, most studies have focused on statistical analysis of crack patterns and qualitative study of contributing factors to crack development rather than prediction. Because it is exceedingly difficult to capture the nonlinear processes during desiccation in analytical modelling, most such models handle crack formation without considering variation of material properties with time, and are unattractive to use in realistic modelling. The data obtained from laboratory experiments on clay soil desiccating in moulds were used as a basis to develop a more refined model of desiccation cracking. In this study, the properties, such as matric suction, stiffness and tensile strength of soil, and base adhesion, could be expressed approximately as functions of moisture content. The initial conditions and the development of suction due to desiccation and the varying material properties were inputted to UDEC, a distinct element code, using its internal programming language FISH. The model was able to capture some essential physical aspects of crack evolution in soil contained in moulds with varying lengths, heights, and materials of construction. Extension of this methodology is potentially beneficial not only for modelling desiccation cracking in clay, but also in other systems with evolving material properties such as concrete structures and road pavements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号